
 
 
 
 
    

 
UNIVERSITY OF ROMA 

TOR VERGATA 
 

ENGINEERING SCIENCES COURSE 
A.A. 2016/2017 

Graduation thesis 

 
EVALUATION OF THE RESIDENCE TIME 

DISTRIBUTION IN A SCREW REACTOR : 
THE AXIAL DISPERSION MODEL 

 
 

SUPERVISOR                 CANDIDATE                            
PROF. STEFANO CORDINER                            ANDREA DE MATTEIS 
PROF. VINCENZO MULONE      
                         

       SUPERVISOR ASSISTANT 
       ENG. ALESSANDRO MANNI                                



Table of contents 
Abstract	...............................................................................................................................	3	

1.	Introduction	.....................................................................................................................	4	

2.	The	Residence	Time	Distribution	......................................................................................	6	
2.1	RTD	modeling	..........................................................................................................................	6	

	CSTR	and	PFR	series	.................................................................................................................	7	
	Axial	dispersion	model	.............................................................................................................	7	
	Stochastic	model	......................................................................................................................	8	
	Bimodal	RTD	.............................................................................................................................	8	
	Convolution	..............................................................................................................................	8	

2.2	Model	Selection:	coupling	with	heat	and	mass	transfer	...........................................................	9	
2.3	RTD	measurement	in	rotary	kiln	............................................................................................	12	

3.	Axial	dispersion	model	...................................................................................................	14	
3.1	RTD	Evaluation	......................................................................................................................	15	

4.	Axial	Dispersion	Model:	solution	by	the	method	of	lines	................................................	17	
4.1	Initial	and	Boundary	conditions	.............................................................................................	18	

5.	Matlab	code	...................................................................................................................	20	
5.1	Numerical	solution	of	the	Axial	Dispersion	Model	.................................................................	20	
5.2	Evaluation	of	the	RTD	............................................................................................................	25	

	Evaluation	of	the	RTD	in	function	of	the	mean	travelling	velocity	.........................................	26	

6.	Analysis	of	Results	..........................................................................................................	31	
6.1	Parametric	analysis	of	the	Axial	Dispersion	Model	................................................................	31	

	Influence	of	the	solid	velocity	us	............................................................................................	31	
	Influence	of	the	diffusion	coefficient	d	..................................................................................	33	
	influence	of	the	number	of	lines	n	.........................................................................................	34	

6.2	𝐄(𝐯)	Resampling	...................................................................................................................	37	

7.	Conclusions	....................................................................................................................	39	

8.	Bibliography	...................................................................................................................	40	
 

  



Abstract 
Biomasses thermochemical conversion may give a significant contribution to the 

flexible and programmable production of electric and thermal power in the context of 
renewable sources. In this perspective, the fast pyrolysis process is a very interesting 
technology whose role is rapidly increasing. Until now, only few models have been 
developed to describe screw reactor systems behavior designed for biomass fast 
pyrolysis. As happen in all the thermochemical processes, temperature profile play a 
crucial role, and in particular for fast pyrolysis purposes. Hence, a consistent heat 
transfer model is needed to develop a reliable simulation framework. Moreover, to be 
solved properly, the heat transfer model requires an advanced residence time 
description to be applied on the mass flow evolution along the reactor. The aim of this 
thesis is then the evaluation of  this distribution by means of a previous 3D DEM 
numerical analysis data. This further evaluation will be done with an Axial Dispersion 
Model ADM. The ADM solution will be achieved by a numerical simulation with the 
method of lines: by spatial discretization, the problem is reduced into a series of 
Ordinary Differential Equations. The ODE system is then solved in MatLab environment. 

  



1.Introduction 
Over the last years, an increasingly demand of energy production has been observed 
worldwide. Due to the serious environmental challenges and energy shortage brought on 
by the massive consumption of fossil fuels, it has become a global consensus to develop 
renewable and sustainable energy [1, 2]. For that reasons, models involving energetic, 
environmental and economic issues, have been applied to support state policies able to 
reduce the impact of the excessive use of carbon in energy production [2]. The correlation 
between energy consumption, economic growth and energy induced emissions has shown 
the impact on environmental degradation of the increasing energy demand[3]. As a result, 
a deep research activity has started worldwide to support the utilization of renewable 
sources [4]such as bioenergy from thermochemical processes [5]. In this context, a 
peculiar aspect of renewable energy sources is related to their local character and their 
inherent diffused geographical availability. A distribution of the energy generation is 
therefore the objective toward which the development of the current energy source 
scenario is focused on  [6]. the deployment of  renewable energy technologies will 
contribute significantly to energy independence of all the regions in the world [7], with 
associated economic and environmental benefits [8-10]. However, the harvesting of 
renewable resources represents a very large component of cost associated with biomass 
energy production and generation. This cost is higher compared with the one of fossil fuels 
due to the huge difference in volumetric energy content [11]. As a consequence, the 
increase of energy density turns out to be of fundamental importance in the use of 
biomass as source of energy. One of the possible approaches is the intermediate 
conversion of solid biomass into liquid or gaseous products, through biochemical or 
thermochemical processes. However, the strong dependence of performance parameters 
from feedstock characteristics [12]  and conversion technology design aspects[13], makes 
the design process  and consequently  whole system cost effectiveness challenging. 
Useful to this aim are the information collected from small to full scale experiments, such 
as those reported in literature available studies [14] for fixed bed[15, 16], microwave[17], 
fluidized[18, 19], entrained flow [20] and free fall reactors[21]. So in general the use of 
experimental data is a valuable tool to support design strategies. Modeling tools such as 
the numerical ones for wastes [22] and biomass conversion [23, 24] are of outmost 
importance as well. they are able, in fact, to describe processes like the torrefaction [25, 
26] the gasification [27, 28],such as fixed bed systems[29, 30], and pyrolysis ones [31]. 
Furnaces fed by biomass residues [23, 24] have been deeply developed by this kind of 
approach as well. Same considerations may be made for the fast pyrolysis process which 
is rapidly increasing as a reliable solution, for residual materials such as biomasses [32] 
and wastes [33]. Numerous numerical fast pyrolysis models, focused on the improvement 
of bio-oil production parameters, have been developed and can be found in the literature 
[34-37]. Until now, very few models have been developed to describe a screw reactor 
system behavior designed for biomass fast pyrolysis and only recently ad hoc dimensional 
analysis for such a kind of systems has been proposed[38]. Continuous  reactors, 
generally presents imperfect flow characteristics, which can led to variations in the desired 
residence time  due to stratification or undesired back mixing. The non ideality produce a 
residence time distribution  that describe in general the probability that a particle will spend 



a certain amount of time in such conditions. Then, to properly model heat and mass 
transfer, the prediction of the residence time distribution is mandatory. From experimental 
measurements, it has been found that the time each particle spends inside the reactor has 
not a constant value, but it is different for each infinitesimal mass composing the flow rate. 
Consequently, since the length of the reactor has a fixed value, also the velocities of the 
different particles inside the reactor will assume different values. As a consequence, each 
of them will have its personal heating history and conversion rate. It is therefore 
fundamental to evaluate a velocity function in order to understand the different reactions 
that will occur inside the reactor for each considered particle. Two different directions can 
be taken to face with this problem. The first one is to define in each reactor section a fixed 
distribution from the inlet to the outlet. This distribution can be evaluated by simple 
analytical models or by experimental campaigns. However in this case, the considered 
distribution is just the one observed at the exit of the reactor. This hypothesis has a very 
strong impact on the results, since the particles history can dramatically affect the process 
evolution. Is in fact widely known that, depending on different system characteristics, a 
certain particle distribution will develop inside the reactor. The second direction assume 
that the particles distribution will evolve along the reactor together with  the reactions. 
Therefore, some particles will be faster, some others will proceed with a lower velocity. 
The knowledge of such distribution evolution along the reactor, allow to better match 
experimental data with numerical results by a simultaneous RTD-heat and mass transfer 
coupling. In this work, data from 3D simulation have been considered to be compared with 
a simplified model output. This model, namely Axial Dispersion Model, can evaluate in a 
simplified manner such evolution by means of a convective diffusive equation evolving 
along the reactor.  

 
Figure 1: Overall system setup  

Figure 1 shows the simplified model of the fast pyrolysis process. Pyrolysis in 
general means the rapid heating up in the absence of oxygen. Should be noted that, 
among the all possible technologies, fast pyrolysis has been chosen for the increasing 
interest in producing biofuels technologies. The high oil conversion is, in fact, the most 
attractive characteristic of this process. The thermal reactions transform biomass to 
biochar , oil and/or gases . All these products can be used without further processing to 
provide heat or power. Moreover, the pyrolysis oil can be converted to high-quality liquid 
fuels via bio-refinery processes.   



2.The Residence Time Distribution 

In chemical engineering, the correct processing of a certain specie in a specific reactor, 
does not depend only the average parameters, but on their time and spatial distribution as 
well. In a rotary drum, the same consideration can be analogously done: the process yield 
is strictly connected to such distribution. This spread is caused by secondary patterns in 
the flow above the average field. The particles in the reactor are in fact subject to two main 
mechanisms that cause them to move.  

 
Figure 2: RTD injection and detection [39] 

The first one is an overall convection which moves the bulk from inlet to outlet with a global 
axial velocity equal to the mean value of the velocity profile. The second mechanism 
happens on a smaller scale and will generate axial dispersions of the individual particles or 
rather conglomerates of particles. These secondary movements have velocity components 
in both the longitudinal (axial) and transverse direction. Due to their random behavior, the 
secondary movements can be mathematically described by a diffusion coefficient (for fluid 
systems) or dispersion coefficient (for solid systems). All these mechanisms have a certain 
influence upon the time spent by the particles in the reactor. Therefore, the knowledge of 
the RTD is of paramount importance in the reactor design since it can dramatically affect 
its reaction performance. This fact occur since the RTD describes the probability that a 
certain particle or chemical species will spend a specific time at desired reaction 
conditions. Take as example a continuous reactor with a sharp, low-variance RTD. The 
mean residence time value at the target reaction time is favorable for translating from 
bench-scale batch reactor conditions. This will allow more precise control of reaction 
extent and ultimately the ability to maximize desired intermediate product yield. 
 

2.1 RTD modeling 
To date, many studies have been done on developing different models to simulate and 
evaluate the RTD in rotating reactors. This because it is a crucial index in understanding 
the material flow profile. As a consequence, such evaluation is widely used in many 
industrial processes, such as the continuous manufacturing of chemicals, plastics, 
polymers, food, catalysts, and pharmaceutical products. In order to achieve satisfactory 
output from a specific unit operation, raw materials are designed to stay inside the unit 
under specific operating conditions for a specified period of time. This residence time 
information is usually compared with the time necessary to complete the reaction or 
process within the same unit operation. For example, the local reaction rate coupled with 
the time the mass stays inside the reactor determines the unit performance. If the time 



required to complete the reaction is longer than the actual residence time, the process 
cannot provide a complete operation and fails its design purpose. 
The research on the RTD in chemical engineering fields focused on Different points of 
view. From the influence of operation conditions, materials, and the unit geometry on the 
RTD profile, to the improvement of measurement and modeling methods for different 
processes and units. Due to the wide scope of the RTD issue, many papers have been 
published concerning different applications[40, 41]. Therefore, the RTD can be evaluated 
with the use of different models that will be here presented. Moreover, one of them will be 
chosen for the thesis specific case. 

 CSTR and PFR series 

Modern RTD theory, has been originally developed from continuous fluid systems. Early 
fluid reactor models assumed plug flow in a tubular-shape reactor (PFR), or perfect mixing 
in continuous stirred tank reactors (CSTR). These conceptions represent two extreme 
RTD profiles in the reactor. In real case continuous flow systems, experimental RTD 
profiles are usually between the two extremes. Combinations of CSTR and PFR are then 
used in modeling practical cases. CSTR in a series model is one commonly used model: 
 

𝜏 =
𝑁𝑉*
𝐹  

(2.1) 

 
𝐸 𝜃 =

𝑁(𝑁𝜃)./0

𝑁 − 1 ! 𝑒
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(2.2) 

Where 𝜏 is the mean residence time (MRT), 𝑁 the number of CSTR tanks, 𝑉* the volume 
of each tank, and 𝐹 the volumetric flow rate. 𝐸 𝜃  represents the dimensionless RTD and 
𝜃 = 𝑡 𝜏 the dimensionless time. This model is a one-parameter model, so that the 
idealness of the RTD is represented by the number of CSTR tanks used. Large number of 
tanks indicates a PFR-like reactor, and a small number leads to a CSTR-like reactor. 

 Axial dispersion model 

Despite the combination of CSTR and PFR elements, the axial dispersion model is an 
efficient alternative to generalize the RTD concept to most non-ideal reactors. The PDE 
representing the axial dispersion process of a tracer in the flow system, or the Fokker–
Planck equation (FPE), is a simple 1D equation. 
 𝜕𝑐

𝜕𝑡 = 𝐷:;
𝜕<𝑐
𝜕𝑥< − 𝑢?

𝜕
𝜕𝑥 𝑐 

(2.3) 

The explanation of the different parameters composing equation (2.3) together with its 
formulation will be considered later on since this is the model chosen for the evaluation of 
the RTD. 
A mention should be made on the most widely used solution of the Fokker-Planck 
equation, developed by Taylor with open-open boundaries: 
 

𝐸 𝜃 =
1

2 𝜋𝜃/𝑃𝑒
𝑒[/

EF 0/5 G

H5 ] 
(2.4) 

This solution expresses the Residence Time Distribution function taking as only 



independent parameter the dimensionless time 𝜃 = 𝑡 𝜏 . 𝜏 is the mean residence time 
(MRT);	𝑃𝑒 = 𝑢?𝑙 𝐷:; represents the Peclet number, and 𝑙 is the distance between injection 
and detection points. This solution was applied in the fitting of experimental RTD data in 
various systems and good agreement was obtained, especially for rise-delayed or long-
tailed RTD profiles, showing the robustness of the Taylor's dispersion model.  
Despite its reliability, the Taylor’s dispersion model gives the residence time distribution 
function just at the exit of the reactor. However, for the purpose of this thesis, interest is 
given to a more general solution that is able to solve the ADM also in the interior points 
(𝑥 𝑙 < 1). For this reason, no further considerations will be made about the Taylor 
solution.  

 Stochastic model  

Another widely used RTD model, consider the particle movement as a stochastic process. 
In particular the axial motion of any particle or small fraction of material inside a continuous 
system, is considered as a two dimensional probabilistic process. As a result, the overall 
RTD curve can be calculated by the accumulation of the random axial motions of these 
small fractions. An example of stochastic model that is similar to the CSTR and PFR 
series, is the Markov chain model. Briefly, this model arbitrarily defines the ratio of flux 
exchange among assumed elements connected in a network. This is done considering 
that the successive system state depends only on the current one and nothing else. 
Although the exchange of flux is well modelled among different elements, mixing inside 
each element is not considered in a Markov chain model. This fact differ this case from the 
CSTR and PFR series model. It is important to note that this model is very useful when the 
flow regions within the system can be easily distinguished into different elements. As an 
example granular flows with heterogeneous cross-wise layers. 

 Bimodal RTD 

Bimodal RTD profile results from two or more main flow components traveling differently, 
for instance, through two paths in reactor, or on different layers in a granular flow system. 
The dual peaks result from the overlap of RTD components through different paths. Those 
kind of systems are not common, therefore they are not deeply considered in literature. In 
fact, due to case-sensitivity, no quantitative models have been developed for bimodal RTD 
profile until now. However, the Bimodal RTD will probably be useful in a future 
development aimed at the study of particular components that would turn out to have a 
bimodal behavior. 

 Convolution 

In considering fluid systems, it is common to have a non-ideal tracer injection due to a 
relatively short MRT compared to the injection period of a fluid pulse. The algorithm of 
convolution, introduced by Danckwerts, has been applied in recent studies since the 
injection was usually not a perfect pulse. In the case considered in this thesis, the MRT is 
much higher than the injection  period, so that this model will not be considered for our 
purposes. 



2.2 Model Selection: coupling with heat and mass transfer 
As already mentioned, the model chosen for the evaluation of the RTD is the Axial 
Dispersion Model ADM. The main reason behind this choice lies in the possibility of 
computing a velocity distribution inside the reactor. This distribution, after a resampling into 
an arbitrary chosen number of values, can be then directly inserted into a complete heat 
and mass transfer model [42]. A stiff system of differential equations will be defined and 
then solved using Matlab. Moreover, the ADM gives advantages under a computational 
point of view since it can be solved by means of a finite difference approximation of the 
PDE describing the model. This will lead to a sequence of time distributions (of number 
equal to the number of lines) that describe not only the  distribution at the exit of the 
reactor, but also inside its length. To better understand the framework where this thesis 
project will be inserted, the energy transfer modeling of the fast pyrolysis process will be  
here briefly presented. 
The process of heat transfer represents for sure the most important aspect for the fast 
pyrolysis reactor design. Screw conveyors have unique features in terms of heat transfer 
characteristics, which can be shared with rotary kilns. As a consequence, the same 
approach used in the mathematical modeling of heat transfer in a rotary kiln Thermo-
Reactor has been used. The screw velocity in fact, similarly to kilns rotation speed, has a 
strong influence on heat transfer coefficients especially between the wall and the solid 
bed. In Figure 3, the schematic of a control volume is given. 

 
Figure 3: Model control volume 

The model [42]has been developed considering some assumptions as solid and gas 
phases well mixed over the radial direction, variable solid particle size, gas phase 
behaving as a perfect gas and finite axial dispersion. According to Figure 3, the mass flow 
rate of the individual species is considered. Chemical reaction described by the reaction 
rate 𝑘M will influence the flow rate 𝐹M. The steady state mass balance over the control 
volume can be evaluated for the single species as reported in table 1. Individual velocities 
𝑉M have been evaluated [43] according to the experimental RTD simulation from a 3-D 
DEM approach. The gaseous fraction velocity can be derived from the total area 
expression (table 1). The total mass conservation is ensured by the differential form (DF) 
of the total area. Concerning the energy balance equations, the above considered is a 
multiphase system. It consists therefore of two domains with two coupled energy balance 
equations: one for the solid phase and one for the gaseous phase. From table 1, a global 
formulation of the energy balance equation over the entire control volume can be 



evaluated. The first term LHS represents the heat of reactions. From the global 
formulation, the energy balance for both the solid and gaseous phase can be evaluated in 
two similar ways as reported in table 1. In the solid phase equation, 𝑞:/OP,? is the sum of 
unit length conductive and radiative heat fluxes from wall to solid bed, and 𝑞F/OP the sum of 
convective and radiative fluxes exchanged with the gas phase. Concerning the energy 
balance over the gaseous phase, 𝑞:/OP,R represents the unit length heat flux given by the 
exposed wall to the gas phase through convection and radiation, and 𝑞F/OP the convective 
flux exchanged with the solid phase.  
The problem gives a 17𝑛U + 4 ×[17𝑛U + 4] system. In this system, 𝑛U is the number of 
sub-velocities given by the resampling of the velocity distribution obtained from the 
solution of the ADM. The number of 𝑛U can be decided arbitrarly by extracting the required 
amount of velocity values from the RTD analysis. In this way, the ADM  solution can be 
inserted into the more general pyrolyzer solution in the heat and mass transfer model. In 
fact, after having provided the initial conditions at z=0, the set of equations commented 
above, are solved in MatLab by means of the ode15s solver (step size must be taken 
extremely small to avoid instability in the solution). However, Definition of heat transfer 
fluxes are required to solve the ODE set. This has been done in [42]  as follow: in such a 
reactor, as reported in Figure 4, the thermal energy externally provided, is given to the 
solid bed and to the gas phase via two different paths: one across the exposed bed 
surface and the other one through the covered bed surface. At the exposed surface, the 
solid phase absorbs heat by convection and radiation, while the covered bed region gets 
heat mostly via conduction at the wall. 

 
Figure 4: Heat transfer model diagram 

 
Again, due to similarities between screw conveyors system and rotary kiln ones, heat 
transfer coefficients have been determined [44, 45]. Description of the heat transfer model 
can be done with the use of an equivalent electric circuit. In this kind of approach, 
electrical resistances are represented by terms as 1/ℎM𝐴M and voltage generators are 
used to substitute the gas, solid and wall temperatures. As a consequence, the heat 
transfer per unit length can be evaluated from the equations reported in table 1. Thermal 
resistance will be constituted of a term which depends on the solid contact [46]  and 
another one related to the gas film at the surfaces interface. Thus, the conductive heat 
transfer coefficient between the covered wall and the covered bed can be evaluated (table 
1). As already highlighted, the convective heat transfer is made of two terms: 𝑄F\/R]U  and 



𝑄F^/R]U . They express respectively the heat transfer between the gas phase and the 
exposed wall and bed surface. Convective coefficients can be evaluated by means of the 
equations proposed in [47] for a rotary kiln and reported in table 1.  The radiative heat 
transfer  has been modelled under the following main assumptions: bodies are considered 
grey, the axial temperature gradient is negligible, the view factors are taken constant and 
equal to unity, emissivity and transmissivity are assumed constant over the reactor length 
abscissa. 

Table 1: Model equations 
Balance  equations 

Mass Balance 
𝜕𝐹\,_
𝜕𝑧

+
𝜕𝐹a,_
𝜕𝑧

+
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𝜕𝑧

c

bd0

+
𝜕𝐹],b,_
𝜕𝑧

+
𝜕𝐹R,b,_
𝜕𝑧
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𝜕𝐹e,b,_
𝜕𝑧

+
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_d0

±
𝑘M𝐹M
𝑉M
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f

Md0

 

Total area constancy 	𝐴M

f

Md0

= 	
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=
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Energy balance 
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Energy balance over 
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Energy balance over 
gaseous phase 
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Heat transfer model equations 
wall to bed 𝑞:/OP,? = ℎ]\/]^]u 𝐴]\ + ℎF\/F^v 𝐴F^ 𝑇\ − 𝑇?  
exchanged 𝑞F/OP = −(ℎF^/R]U +ℎF^/Rv )𝐴F^ 𝑇? − 𝑇R  
wall to gas 𝑞:/OP,R = (ℎF\/R]U + ℎF\/Rv )𝐴F\ 𝑇\ − 𝑇R  

Conductive and convective  coefficients 
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Radiative coefficient 
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2.3 RTD measurement in rotary kiln 
The distribution of residence times can be examined by injecting inert material (tracer) into 
the reactor. The tracer can be then analyzed in concentration at the reactor exit  in order to 
evaluate the RTD. In literature, two methods of tracer injection, called respectively pulse 
tracer and step tracer, are mostly considered. In case of pulse tracer method, an amount 
of tracer is instantaneously injected in one or more shots to the feed stream of the reactor 
in a very short time. Subsequently the tracer concentration is measured as a function of 
time and the RTD can be obtained. Differently, the step tracer method uses a constant rate 
of tracer injection during the measurement. Clearly, RTD measurements from the two 
methods are different; it is important to specify that, however, the responses from the two 
methods are related to each other and the pulse response is readily translated into the 
step response, and vice-versa. 
In this thesis, the pulse tracer injection methodology has been used. In the MatLab 
simulation, this translates in a row vector representing the tracer injection at the initial time. 
The tracer distribution is represented by a step function of unitary height and width 
decided by experimental activity considerations. This means that, after the discretization of 
the spatial coordinate, the tracer will have its amplitude over an 𝑙 number of lines. This 
number 𝑙 can either be arbitrarily decided or can be set as a percentage of the number of 
lines. The latter solution is desirable in the case of a great amount of lines in order to have 
the resultant 3-D plot of the tracer distribution in proportion with the discretized spatial 
coordinate.  
Nevertheless, it is important to note that the width of the tracer injection is not a parameter 
which influences the overall result of the experiment and that the RTD can be successfully 
studied by selecting a default value for 𝑙. In fact, the pulse response curve will always be a 
Gaussian one as can be seen from figure 5. 
 

 
Figure 5: plot of the exit concentration 
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Figure 6: plot of the input tracer concentration 
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3.Axial dispersion model 

In this thesis, the axial dispersion of tubular reactor was employed to describe behavior of 
the flow in the reactor, i.e. residence time distribution. The following derivation, follows 
the one reported in [48]. The model structure comes from an unflighted rotary kiln with 
length L and diameter D, which is fed by a continuous solid mass flow rate ms . These 
hypotheses are used for the derivation of the axial dispersion model (ADM). 

 
Figure 7: Model of the unflight rotary kiln 

In particular, a differential element ∆𝑥  in the reactor is considered. The mass balance of 
sold flow over element ∆𝑥 without reaction is given as:  

Now – Before= In – Out  

 ∆𝑥𝐴?𝜌?	|;,e�∆e − ∆𝑥𝐴?𝜌?|;,e = ∆𝑡𝐹?|;,e − ∆𝑡𝐹?|;�∆;,e  (3.1) 

Dividing equation (3.1) by ∆𝑥 ∆𝑡, and taking the limit ∆𝑥 , ∆𝑡→0 the equation will become 
 𝐴?𝜌?	|;,e�∆e − 𝐴?𝜌?|;,e

∆𝑡 =
∆𝑡𝐹?|;,e − ∆𝑡𝐹?|;�∆;,e

∆𝑥  (3.2) 

 𝜕
𝜕𝑡 𝐴?𝜌? = −

𝜕𝐹?
𝜕𝑥   (3.3) 

From Flick’s law of diffusion, mass flow rate (𝐹?) is written as: 
 

𝐹? = 𝑢?𝐴?𝜌?	 − 𝐷:;
𝜕
𝜕𝑥 (𝐴?𝜌?	) 

(3.4) 

Where 𝑢?, 𝐴?, 𝜌?	,		and 𝐷:; are the solid velocity (m/s), cross-sectional area of the bed 
(m2), bulk density of solid bed (kg/m3), and axial dispersion coefficient (m/s), respectively. 
By substitution of Equation (3.4) into equation (3.3), will be  
 

                   �
�e

𝐴?𝜌? = �
�;

𝐷:;
�
�;

𝐴?𝜌?	 − �
�;

(𝑢?𝐴?𝜌?	) 
(3.5) 

The bulk density of the solid bed (𝜌?	) will be considered as constant within the model, and 
the equation will become 
  

                                       ���
�e
= �

�;
𝐷:;

���
�;

− �
�;
(𝑢?𝐴?) 

(3.6) 



Equation (3.6) is essentially a relation to describe the bed cross section area 𝐴?(𝑡, 𝑧)in 
time and space. 
In order to develop a model to compute the RTD of solid, tracer mass fraction, 𝑥e, is 
introduced into equation (3.6), and the final form of the axial dispersion equation is given 
as  
 

									
	𝜕𝑐
𝜕𝑡 =

𝜕
𝜕𝑥 𝐷:;

𝜕𝑐
𝜕𝑥 −

𝜕
𝜕𝑥 (𝑢?𝑐) 

(3.7) 

Where 𝑐 = 𝑥e𝐴?	is proportional to the amount of tracer.  
Equation (3.7) is a Partial Differential Equation known as the Fokker-Planck Equation 
(FPE). This equation will be later on discretized into a set of 𝑛 Ordinary Differential 
Equations (being 𝑛 the number of lines) to be solved using the ODE15s Matlab stiff 
integrator. 𝑛 initial conditions (𝑡 = 0) are therefore needed, one for every ODE. This has 
been done using a step function of unitary height inserted inside the Matlab code through 
a vector of one line and n columns. The vector will be composed by all zeroes except for a 
number 𝑙 of columns whose values will be set equal to 1. 
In this analysis, the dispersion coefficient, as well as the solid velocity, are considered 
space independent. Therefore the equation becomes: 
 𝜕𝑐

𝜕𝑡 = 𝐷:;
𝜕<𝑐
𝜕𝑥< − 𝑢?

𝜕
𝜕𝑥 𝑐 

(3.8) 

As already stated in chapter 2, lots of studies have been done about Residence Time 
Distribution and different models can be used to describe it. In this thesis the ADM has 
been chosen for the evaluation. One of the reasons lies in the clear physical meaning of 
the parameters in the Fokker Planck Equation:	𝑢? and 𝐷:; indicates the combination of the 
convective axial transport and the superimposed axial dispersion. The axial dispersion 
coefficient is a function of the solid velocity 𝑢?, the length of the reactor (L) and the Axial 
Peclet number 𝑃𝑒:; 
 
 

 𝐷:; =
O��
EF��

  (3.9) 

This equation is very useful in understanding the dependence of the axial distribution on 
the convective over diffusive ratio by means of the axial Peclet number evaluation. 

3.1  RTD Evaluation 
The RTD is usually described by the age distribution of a material in an extruder 𝐸(𝑡): this 
quantity is called residence-time distribution function. This function is obtained as a result 
at the exit of the reactor to our pulse tracer injected at the beginning of the simulation. In 
this way 𝐸(𝑡) can be defined as: 

Where 𝐶(𝑡) is the concentration, or mass fraction of tracer that leaves the reactor at time 𝑡. 
With respect to equation (3.7),  𝐶(𝑡) corresponds to 𝑐(𝑡, 𝑧) evaluated at 𝑧 = 𝐿. 

   
𝐸 𝑡 =

𝐶 𝑡
𝐶 𝑡 𝑑𝑡�

*

 (3.10) 



Another parameter which usually is taken to describe the RTD is the exit age over time 
𝐹(𝑡). This curve is interrelated to the 𝐸 𝑡 	curve and it represents the cumulative 
distribution function in the exit stream at any time. It is given by 
 

𝐹 𝑡 = 𝐸 𝑡 𝑑𝑡 ≅
𝐶(𝑡)∆𝑡_e

*

𝐶(𝑡)∆𝑡_�
*

e

*
 (3.11) 

Application of mean residence time (𝜏) and its variance (𝜎<) are also important parameters 
of RTD. The particle mean residence time, is defined by the following mathematical 
expression:  
 

𝜏 = 𝑡𝐸 𝑡 𝑑𝑡
�

*
=

𝐶 𝑡 𝑡𝑑𝑡�
*

𝐶 𝑡 𝑑𝑡�
*

 (3.12) 

The variance, which represents the square of the spread of distribution, is calculated by 
the following equation: 
 

𝜎< = 𝑡 − 𝜏 <𝐸 𝑡 𝑑𝑡
�

*
 (3.13) 

From the above discussion, it can be seen that the fundamental computation in studying 
the RTD in a screw reactor is the evaluation of the Residence Time Distribution function. In 
fact, evaluation of the other parameters comes directly from numerical computation of 
𝐸 𝑡 . Moreover, the evaluation of the function 𝐸 will connect this thesis with the study of 
reactor energy and mass balances previously seen. In fact, that study takes as input 𝐸(𝑣) 
that is, the RTD function expressed in function of the average travelling velocity of the 
particular concentration inside the reactor. Therefore, the main objective will be the 
computation of the Residence Time Distribution function. 
  



4. Axial Dispersion Model: the method of lines 

According to chapter 3, the axial dispersion model, which was developed to calculate 
the residence-time distribution of granular solid within rotary kiln, is a partial-differential 
equation (PDE) in space and time derivative. The producing of analytical results is very 
complex and requires too much time. Therefore, numerical solution is the better choice to 
solve the model of axial dispersion. Ideally, the numerical solution is simply a numerical 
evaluation of the analytical solution. But since an analytical solution is generally 
unavailable for realistic PDE problems in science and engineering, the numerical solution 
is an approximation to the analytical solution and our expectation is that it represents the 
analytical solution with good accuracy. The method of lines (MOL) is a general procedure 
for the solution of time dependent PDEs and it is the one that has been chosen in this 
thesis. This solution has been considered also because the method of lines has been used 
to make the energy balance of the process happening in the pyrolyzer. Thus, the use of 
the same procedure to solve also the problem of the RTD allows to include the two codes 
in the same template in order to have a complete and unique model to simulate the fast 
pyrolysis process. 

The basic idea of the MOL is to replace the spatial derivatives in the PDE with 
algebraic approximations[41]. Once this is done, the spatial derivatives are no longer 
stated explicitly in terms of the spatial independent variables. Thus, only the physical initial 
conditions are needed. In other words, a system of ODEs that approximate the original 
PDE has been obtained with only one remaining independent variable. The challenge, 
then, is to formulate the approximating system of ODEs. Once this is done, any integration 
algorithm for initial value ODEs can be used to compute an approximate numerical 
solution to the PDE. In this thesis, the Matlab stiff integrator ODE15s has been considered.  

In the illustration of the MOL, an alternative notation for PDEs is considered. Instead 
of writing the partial derivatives as in equation (3.8), it is more convenient to use a 
subscript notation that is easier to state and allows a more direct association with 
computer coding. For instance, equation (3.8) can be written as 
 𝑐e = 𝐷:;𝑐;; − 𝑢?𝑐; (4.1) 

Where, 𝑐e is a subscript notation for 𝜕𝑐 𝜕𝑡. In other words, a partial derivative is 
represented as the dependent variable with a subscript that defines the independent 
variable. For 𝑛 order derivatives, the independent variable is repeated 𝑛 times, for 
example, 𝑐;; represents 𝜕<𝑐 𝜕𝑥<. 
To apply the MOL to equation (4.1), the algebraic approximations of 𝑐; and 𝑐;; are 
needed. Their finite difference approximations (FD) are therefore considered.  

 
𝑐; ≈

𝑐_ − 𝑐_�0
∆𝑥  

 

(4.2) 
 

 
𝑐;; ≈

𝑐_/0 − 2𝑐_ + 𝑐_�0
∆𝑥<  (4.3) 



where 𝑖 is an index defining a position along the grid in 𝑥, and ∆𝑥 is the spacing in 𝑥 along 
the grid, assumed constant. Thus, for the left end value of 𝑥, 𝑖 = 1, and for the right end 
value of 𝑥, 𝑖 = 𝑛, i.e., the grid in 𝑥 has 𝑛 points. Then the MOL approximation of equation 
(3.8) is: 
 

		
𝜕𝑐_
𝜕𝑡 = 𝐷:;

𝑐_/0 − 2𝑐_ + 𝑐_�0
∆𝑥< − 𝑢?

𝑐_ − 𝑐_�0
∆𝑥 							1 ≤ 𝑖 ≤ 𝑛  (4.4) 

The equation (4.4) is written as an ODE since there is only one independent variable, 𝑡. 
What it has just been obtained is a system of 𝑛 ODEs. This transformation of a PDE to a 
system of ODEs, illustrates the essence of the MOL, namely, the replacement of the 
spatial derivatives, so that the solution of a system of ODEs approximates the solution of 
the original PDE. Then, to compute the solution of the PDE, we compute a solution to the 
approximating system of ODEs.  

4.1 Initial and Boundary conditions 
Before considering this integration in 𝑡, we have to complete the specification of the PDE 
problem. Equation (3.8) is second order in 𝑥 and first order in 𝑡, so it requires one initial 
condition and two boundary conditions. This comes directly from the number of auxiliary 
conditions needed to solve a PDE problem. This is determined by the highest derivative 
order in each independent variable. Since eq. (3.8) is first order in 𝑡 and second order in 𝑥, 
it requires one auxiliary condition in 𝑡 and two auxiliary conditions in 𝑥. The 𝑡 is termed an 
initial value variable and therefore requires one initial condition (IC). It is an initial value 
variable since it starts at an initial value, 𝑡*, and moves forward over a finite interval 𝑡* ≤
𝑡 ≤ 𝑡£without any additional conditions being imposed. 
Since 𝑥 is termed a boundary value variable, therefore requires two boundary conditions 
(BCs). It is a boundary value variable since it varies over a finite interval 𝑥* ≤ 𝑥 ≤ 𝑥£, and 
at two different values of 𝑥, conditions are imposed on 𝑐 in equation (3.8). Typically, the 
two values of 𝑥 correspond to boundaries of a physical system, and hence the name 
boundary conditions.  
In our problem, ICs are expressed as 

 𝑐 𝑥, 𝑡 = 0 = 𝐴(𝑥) (4.5) 

Since equation (4.4) constitute 𝑛 initial value ODEs, 𝑛 initial conditions are required. These 
will be  
 𝑐 𝑥_, 𝑡 = 0 = 𝐴(𝑥_)											1 ≤ 𝑖 ≤ 𝑛 (4.6) 

𝐴(𝑥) is a vector of n elements.  
Concerning the Boundary Conditions, the Danckwerts boundary conditions are used, 
namely 
 𝑐 𝑥 = 0, 𝑡 = 0 (4.7) 

 𝜕𝑐(𝑥 = 𝑥£, 𝑡)
𝜕𝑥 = 𝑐; 𝑥 = 𝑥£, 𝑡 = 0 (4.8) 

 



Equations (4.7) and (4.8) applies at the two extremes of the space domain. This means 
that, after the discretization of the domain into 𝑛 lines, they are applied to the first and last 
one. Therefore, for 𝑖 = 1 we will have  
 𝜕𝑐

𝜕𝑡 = 𝑐e = 0 (4.9) 

 
since the value of  𝑐 𝑥 = 0, 𝑡 = 0 does not change after being set as an initial condition. 
On the other side, for 𝑖 = 𝑛, from the discretization of equation (4.8) 
 𝑐_ − 𝑐_�0

∆𝑥 = 0 ⇒	𝑐_ = 𝑐_�0 (4.10) 

After having set the IC and BCs, and after having obtained the discretized form of our 
ADM, we can pass to the numerical solution of the model and, finally, to the calculation of 
the RTD parameters. 
  

 



5. Matlab code 

In the following, a MatLab code in which the previous method has been 
implemented, is presented and commented.  

This purpose, is achieved with a main program that requires as input the number of 
lines and the initial conditions ICs. Moreover various plots and checks are included in 
the program. A second code part is then considered for the specification of some 
problem parameters and for the definition of the FD approximation of eq. (3.8). Boundary 
conditions BCs are then specified. The MatLab stiff integrator ODE15s is considered for 
the computations. 

After the ADM solution, focus is placed on the evaluation of the RTD. This is done in 
the main template with the addition of some code lines which take as input results 
obtained from the above mentioned procedure. Finally, the evaluation of the velocity 
distribution inside the reactor, together with its resampled form, is programmed. 

5.1 Numerical solution of the Axial Dispersion Model 
The main Matlab template used to solve the Axial Dispersion Model, is listed below: 
----------------------------------------------------------------------------------------------------------------------- 
% file pde_main 
clear all 
  clc 
  
l=40; 
n=input('numero di linee'); 
x=1; 
A(1)=0    
for i=1:n 
   if i<l+2 && i>1 
       A(i)=x 
   else A(i)=0 
   end 
end 
                
  
  for i=1:n 
      c0(i)=A(i) 
  end 
 
  t0=0.0; 
  tf=24; 
  tout=linspace(t0,tf,n); 
  nout=n; 
  ncall=0; 
 
  reltol=1.0e-10; abstol=1.0e-10; 
  options=odeset('RelTol',reltol,'AbsTol',abstol); 



  [t,c]=ode15s(@pde_1_diffusion_convection_final,tout,c0,options) 
 
         % A 3D plot is also produced 
  figure(2); 
  colormap('Gray'); 
  C=ones(n/10); 
  g=linspace(0,1,n); % For distance x 
  tmp=downsample(c,10); 
  U=downsample(tmp.',10).'; 
  t=downsample(t,10); 
  g=downsample(g,10); 
  h1 = surface(t,g,U',C); 
  axis('tight'); 
  grid off 
  xlabel('time [s]') 
  ylabel('z/L axis ') 
  zlabel('normalized V(z,t)') 
  s1 = sprintf('Fokker Plank Equation - MOL Solution'); 
  sTmp = sprintf('u(x,0) = sin(\\pi x/2 )'); 
  title([[49]], 'fontsize', 12); 
  rotate3d on; 
   
  % check 
  ingresso=0; 
  for index=1:n 
      ingresso=c(1,index)*(1/n)+ingresso; 
  end 
   
  uscita=0; 
  for index=1:n 
      uscita=c(240, index)*(1/n)+uscita; 
  end 
 error=((input-exit)/((input+exit)/2))*100 
------------------------------------------------------------------------------------------------------------------------ 
The following points about the main program are here presented: 
 
After clearing the workspace and the command window, the user is asked to specify the 
number of lines 𝑛 to apply the MOL. The Initial Conditions (for 𝑡 = 0) are built over an n 
point grid in 𝑥 by means of a row vector representing the amount of tracer initially injected 
in the reactor. The vector is composed by all zeroes except for a number of columns 
decided by the template (in the considered case, l=40) that will have the value specified 
by the variable 𝑥. The result is a vector which simulates, as already stated, a step 
function representing the tracer injected in the reactor. 
 
 
 



% the number of lines is asked 
n=input('numero di linee'); 
 
% Initial condition is computed over an n point grid in x 
l=40; 
x=1; 
A(1)=0    
for i=1:n 
   if i<l+2 && i>1 
       A(i)=x 
   else A(i)=0 
   end 
end 
                
  
  for i=1:n 
      c0(i)=A(i) 
  end 
 
The independent variable t for the ODE integration is defined  
 
t0=0.0; 
  tf=24; 
  tout=linspace(t0,tf,n); 
  nout=n; 
  ncall=0; 
 
The 𝑛 ODEs are integrated by a call to the Matlab stiff integrator ode15s. This integrates 
the system of differential equations 𝑐¦ = 𝑓(𝑡, 𝑐) from t0 to tf  with initial conditions c0. Each 
row in the solution array c corresponds to a value returned in column vector 𝑡. With 
options, some integration settings are considered. They are the absolute and relative error 
tolerances that allow a more precise integration.  
 
reltol=1.0e-10; abstol=1.0e-10; 
  options=odeset('RelTol',reltol,'AbsTol',abstol); 
  [t,c]=ode15s(@pde_1_diffusion_convection_final,tout,c0,options) 
 
A 3-D plot is also produced 
 
 figure(2); 
  colormap('Gray'); 
  C=ones(n/10); 
  g=linspace(0,1,n); % For distance x 
  tmp=downsample(c,10); 
  U=downsample(tmp.',10).'; 
  t=downsample(t,10); 



  g=downsample(g,10); 
  h1 = waterfall (t,g,U',C); 
  axis('tight'); 
  grid off 
  xlabel('time [s]') 
  ylabel('z/L axis ') 
  zlabel('normalized V(z,t)') 
  s1 = sprintf('Fokker Plank Equation - MOL Solution'); 
  title([[40, 49-54]], 'fontsize', 12); 
  rotate3d on; 
 
A comparison between the amount of injected tracer and the amount of tracer observed at 
a specific time instant is made by calculating the area of the step function at 𝑡 = 0 and the 
area of the curve that is present at that instant. 
 
  input=0; 
  for index=1:n 
      input=c(1,index)*(1/n)+input; 
  end  
   
  exit=0; 
  for index=1:n 
      exit=c(240, index)*(1/n)+exit; 
  end 
 error=((input-exit)/((input+exit)/2))*100 
 
The ODE solution by ode15s is evaluated by calling a function defined in a sub-routine. 
This will specify the n ODEs obtained after the discretization of the PDE that will be solved 
by the stiff integrator ODE15s.  
 
------------------------------------------------------------------------------------------------------------------------ 
  
% File: pde_1_diffusion_convection_final.m 
 
function ct=pde_1_diffusion_convection_final(t,c) 
 
  global ncall 
  xl=0.0; 
  xu=0.25; 
  n=length(c);            
  dx2=((xu-xl)/(n-1))^2;  
  dx=((xu-xl)/(n-1));     
  us=0.0206;  
  d=0.00001; 
   
  for i=1:n  



     
    if(i==1)     ct(i)=0;  
    elseif(i==n) ct(i)=d*(c(i-1)-c(i))/dx2;  
    else                                              
               dcdx=(c(i+1)-c(i))/dx 
               dcdx2=(c(i-1)-2*c(i)+c(i+1))/dx2;      
               ct(i)=d*dcdx2-us*dcdx;                 
                                                       
                                                 
    end 
  end 
  ct=ct';  
  ncall=ncall+1; 
------------------------------------------------------------------------------------------------------------------------ 
 
Some considerations can be made about this function as well: firstly some problem 
parameters are defined. 
 
  global ncall 
  xl=0.0; 
  xu=0.25; 
 
The defining statement at the beginning of the sub-routine indicates that the indipendent 
variable 𝑡 and dependent variable vector c are the 𝑖 inputs of the function. The obtained 
output is the vector of 𝑡 derivatives, ct (where 𝑐𝑡 = 𝜕𝑐 𝜕𝑡). This means that all of the 𝑛 
ODE derivatives in 𝑡 are defined. 
 
The finite difference of eq. (3.8) is then programmed. 
 
  n=length(c);            
  dx2=((xu-xl)/(n-1))^2;  
  dx=((xu-xl)/(n-1));     
  us=0.0206;  
  d=0.00001; 
   
  for i=1:n  
     
    if(i==1)     ct(i)=0;  
    elseif(i==n) ct(i)=d*(c(i-1)-c(i))/dx2;  
    else                                              
               dcdx=(c(i+1)-c(i))/dx 
               dcdx2=(c(i-1)-2*c(i)+c(i+1))/dx2;      
               ct(i)=d*dcdx2-us*dcdx;                 
                                                       
                                                 
    end 



  end 
  ct=ct';  
 
the number of ODEs (𝑛) is determined by the command n=length(c). The finite difference 
interval (dx) and its square (dx2) is then computed. The specification of the solid velocity 
(us) and the diffusion coefficient (d) take values from literature. 
The MOL programming of the n ODEs is done in the for loop. For Boundary Condition 
(4.7), the coding is 
 
    if(i==1)     ct(i)=0;  
 
For BC (4.8), the coding is 
 
elseif(i==n) ct(i)=d*(c(i-1)-c(i))/dx2; 
 
From this line of code it is important to note that the fictitious value c(n+1) has been 
replaced by c(n) in the ODE specification. 
For the remaining interior points the programming is 
 
else                                              
   dcdx=(c(i+1)-c(i))/dx 
   dcdx2=(c(i-1)-2*c(i)+c(i+1))/dx2;      
   ct(i)=d*dcdx2-us*dcdx;                 
 
Which follows from the Finite Difference approximation of the axial dispersion model (eq. 
(4.4)). 
 
Since the Matlab ODE integrators require a column vector of derivatives, a final transpose 
of ut is required. 
 
 ct=ct'; 
 ncall=ncall+1; 
 
Finally, the number of calls to the sub-routine is incremented so that at the end of the 
solution, the value of ncall displayed by the main program gives an indication of the 
computational effort required to produce the entire solution. 

5.2 Evaluation of the RTD   
The selected parameter for the description of the RTD is the residence time 

distribution function 𝐸(𝑡) eq.(3.10). This function has been represented by a row vector 
having a number of elements equal to the number of lines chosen for the evaluation of the 
ADM. 𝐸(𝑡) is evaluated using some additional command lines in the main MatLab code. 

 
lastcolumn=c(:,n); 
integral=0; 



for index=1:n 
    integral=c(index,n)*(1/n)+integral; 
end  
E=lastcolumn/integral 
figure(4); 
  x3=linspace(0,1,n); 
  y3=E; 
  plot(x3,y3,'linestyle','-','linewidth',4) 
check=0; 
for i=1:n 
    check=E(i)*(1/n)+check; 
end 
 
𝐶(𝑡) corresponds to 𝑐(𝑡, 𝑧) evaluated at 𝑧 = 𝐿, this means that it is nothing else that the 
last column of the concentration matrix 𝑐.  
 
lastcolumn=c(:,n); 
 
Evaluation of 𝐶 𝑡 𝑑𝑡�

*  means to compute the integral of the curve that we obtain at the 
exit of the reactor (Figure 5). 𝐸(𝑡) can be then evaluated and plotted. 
 
integral=0; 
for index=1:n 
    integral=c(index,n)*(1/n)+integral; 
end  
E=lastcolumn/integral 
figure(4); 
  x3=linspace(0,1,n); 
  y3=E; 
  plot(x3,y3,'linestyle','-','linewidth',4) 
 
The plot has the same shape of the curve obtained at 𝑧 = 𝐿 since the residence time 
distrubution function is just the normalization of the tracer concentration that leaves the 
reactor at time 𝑡. As a consequence, it is expected that the integral over the time domain 
of  𝐸(𝑡) has a unitary value, being 𝐸(𝑡) a Gaussian curve. 
 
check=0; 
for i=1:n 
    check=E(i)*(1/n)+check; 
end 

 Evaluation of the RTD in function of the mean travelling velocity 

 
Up to now, in the evaluation of the Residence Time Distribution function 𝐸(𝑡), time was 
considered as the computation independent variable. 



The next step connects the result of this work with what has already been done in the 
study of the energy balance in a fast pyrolysis screw reactor. Such study uses as input 
parameters an arbitrary number of velocity characteristics of the exit concentration, i.e. a 
sequence of values of the Residence Time Distribution in function of the exit velocity 𝐸(𝑣). 
This means that 𝐸(𝑣) should be evaluated where 𝑣 is the mean velocity of a specific 
tracer concentration. Therefore, the domain of the RTD function should be changed. The 
reasoning that has been done refers to figure 8. 

 
Figure 8: plot of the Residence Time Distribution function 

 
Considering an arbitrary value of 𝐸(𝑡), the time after which that specific concentration has 
left the reactor is specified. Since the reactor has a fixed length, the average velocity with 
which the concentration has travelled can be calculated as well. However, for each 
concentration, there exist two distinct values of time and, as a consequence, two different 
velocities. The higher velocity will be the one corresponding to the lower time and, on the 
other side, the lower velocity will be the one associated with the greater time. This means 
that, to express 𝐸(𝑡) in function of the velocity, it can be noted that, for a specific 
concentration 𝐸, we have 𝑡:, 𝑡^, 𝑣:, 𝑣^	with 𝑡^ > 𝑡:and 𝑣: > 𝑣^. Therefore, 𝐸 𝑡: = 𝐸 𝑣^  
and 𝐸 𝑡^ = 𝐸(𝑣:). 
All of this translates in building the vector 𝐸(𝑣) by considering the 𝑖e©element of 𝐸(𝑣) equal 
to the (𝑛 − 1 + 𝑖)e© element of 𝐸(𝑡), where 𝑛 is the length of 𝐸(𝑡) (equal to the number of 
lines chosen for the computation). 
To evaluate this, the following lines of code allow the computation of the velocity 
distribution and its resampled form: 
 
Ev=E; 
for index=1:n 
    Ev(index)=E(n+1-index); 
end 
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The obtained vector will have a number of values equal to the number of lines initially 
chosen. In order to obtain a reslut which may be directly inserted in the code for the 
energy balance, a resample of 𝐸(𝑣) is needed. Moreover, the number of resampled points 
should be arbitrarily chosen by the user. This means to translate the continuous function  
𝐸(𝑣) into a step function where the number of steps can be decided. 
This has been done using the following code lines: 
 
r=50; %amount of resamples 
f=n/r; %resampling interval 
q=zeros(1,r); 
for index=1:r 
    q(index)=Ev(index*f); 
end 
k=zeros(1,n); 
for j=1:r 
    if j==1 
        for i=1:n 
            k(i)=q(j); 
        end 
    else 
        for index=((j-1)*f+f/2):n 
            k(index)=q(j); 
        end 
    end 
end 
figure(5); 
  x4=linspace(0,1,n); 
  y4=Ev; 
  x5=linspace(0,1,n); 
  y5=k; 
  plot(x4,y4,x5,y5,'linestyle','-','linewidth',4) 
  title('plot of E(v) and its resampling') 
  xlabel('time') 
  ylabel('Ev (blue), k (red)') 
 
%check resampled area  
   check2=0; 
for i=1:n 
    check2=k(i)*(1/n)+check2; 
end 
Some comments about this code are mandatory. Initially, the number of resampling points 
is determined and the resampling interval is calculated 
 
r=50; %amount of resamples 
f=n/r; %resampling interval 



 
A vector having length equal to the number of resamples with the corresponding values 
of 𝐸(𝑣) is then builted  
 
q=zeros(1,r); 
for index=1:r 
    q(index)=Ev(index*f); 
end 
 
Finally, the vector representing the step function having as values the resampled ones and 
that can be inserted directly in the matrix for the energy balance computation, is builted 
 
k=zeros(1,n); 
for j=1:r 
    if j==1 
        for i=1:n 
            k(i)=q(j); 
        end 
    else 
        for index=((j-1)*f+f/2):n 
            k(index)=q(j); 
        end 
    end 
end 
 
Essentially, this code creates a vector of n elements (k) starting from a vector of r 
elements (q) with n>r. Values are assigned to k for each resampling interval and the 
assigned values are taken from the vector q. In this way the vector k will be formed by 
“packages” of values equal to the values of q. k will therefore represent our step function. 
A plot is made to visualize the continuous function 𝐸(𝑣) and its resampled form    
 
figure(5); 
  x4=linspace(0,1,n); 
  y4=Ev; 
  x5=linspace(0,1,n); 
  y5=k; 
  plot(x4,y4,x5,y5,'linestyle','-','linewidth',4) 
  title('plot of E(v) and its resampling') 
  xlabel('time') 
  ylabel('Ev (blue), k (red)') 
It is important to note that, if all the calculations have been done in a correct way, the area 
of the step function must be equal to one since it is always a representation of the 
Residence Time Distribution function and, therefore, must satisfy the gaussian condition of 
unitary area. As usual, an easy check may be built in the main program. 
 
%check resampled area  



   check2=0; 
for i=1:n 
    check2=k(i)*(1/n)+check2; 
end 
 
Concludig, we can observe that the numerical evaluation of the RTD has shown results in 
coherence with  the 3-D DEM simulation. A distribution of the particle’s velocities inside the 
reactor have been obtained. The final step is the collection of the results and the 
evaluation of a parametric analysis.   
  



6.Analysis of Results 

Results obtained from the Matlab code are here analyzed. A parametric analysis of the 
ADM has been done to understand how the different parameters influence the distribution 
of the tracer inside the reactor. Moreover, the 𝐸(𝑣) continuous distribution can be used in 
a resampled shape. The latter is the final result of this thesis project, the one that must be 
integrated into the previously made studies about the pyrolyzer operating framework. 
 

6.1 Parametric analysis of the Axial Dispersion Model 
Once the ADM is solved by means of the MOL, can be noticed as  the main parameters 
influencing the distribution of the concentration are: the solid velocity us, the diffusion 
coefficient Dax and the chosen number of lines n for the MOL evaluation. 
The influence of these parameters on the final solution is fundamental to understand how 
the operating parameters can be properly selected to optimize the particles distribution 
inside the reactor. 
 

 
Figure 9: ADM solution 

 Influence of the solid velocity us 

By keeping constant both the number of lines (n=620) and the diffusion coefficient        
(Dax =10/�), can be observed a profile variation  decreasing the solid velocity us. 
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Figure 10: Fokker Plank Equation – MOL Solution us=0.0206 

 
Figure 11: Fokker Plank Equation – MOL Solution us=0.0103 
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In this example the solid velocity has been decreased by the 50% of the original value.  
It is immediate to note that there are two main results in changing this parameter. The first 
one is that the time required for the tracer to reach the end of the reactor (z/L=1) increased 
relevantly, passing approximately from 11  to 22 seconds. The second result is that the 
convexity of the curve has changed being the one for us=0.0103 more  flat  than the one 
for us=0.0206. This results are relevant in the design of the reactor characteristics. Clearly, 
the time required for the particles to exit the reactor is an important parameter since it will 
change considerably the heating histories of the different particles. An higher time means 
that the reaction to which they are subjected will last long. This should be properly 
modeled to obtain the desired result. The reference value us=0.0206 gives exit times of 
the order of 11 seconds. This is in line with a fast pyrolysis process where the time for the 
reactions are considered to be around 5 seconds, which Is the required time for half 
reactor. The variation in the curve convexity must be considered as well. In fact, as will be 
better explained when considering the variation of the diffusion coefficient, an higher 
convexity means a lower uniformity of the different reactions. Again, us=0.0206 has given 
good result under this point of view.  
 

 Influence of the diffusion coefficient Dax 

The influence of the diffusion coefficient in the overall result can be observed keeping the 
number of lines n=620 and the solid velocity us=0.0206. 
Results are highlithed for Dax =10/�  and  Dax =3 ∙ 10/� 

 
Figure 12: Fokker Plank Equation – MOL Solution d=0.00001 
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Figure 13: Fokker Plank Equation – MOL Solution d=0.00003 

 
Increasing the diffusion coefficient of the 300% can be noted that the distribution of the 
tracer happens in a faster way. This is translated in a steeper curve after the tracer 
injection and in the increase in the convexity of the plot over the entire space domain. In 
this case, the increase of the diffusion coefficient has no effect on the average time 
required for the tracer to reach the end of the reactor. The convexity of the curve is an 
important aspect to consider in this evaluation. An higher convexity means that the RTD of 
the different particle will be less uniform. This is translated into very different heating 
histories for the different fractions. As a consequence, the reactions to which the different 
particles are subjected in the process, are predicted to vary more as we increase the 
diffusion coefficient. This suggest to keep the coefficient Dax as low as possible in order to 
have uniform reactions for the different particles inside the reactor.  
 

 Influence of the lines number n 

The choice of the number of lines used for the MOL will determine the number of ODEs 
solved by the code. This means that a change in the number of lines will change 
significantly the computational effort. The time required for the solution of the PDE will 
increase as n increases, but the reward will be a solution which better approximates the 
analytical one.  
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Figure 14: Fokker Planck Equation - MOL solution n=500 

 
 

 
Figure 15: Fokker Planck Equation - MOL solution n=560 
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Figure 16: Fokker Planck Equation - MOL solution n=620 

 
Figure 17: Fokker Planck Equation - MOL solution n=750 
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Figure 18: Fokker Planck Equation - MOL solution n=1000 

It can be immediately observed that the grid over which the plot is computed is more 
dense as we increase the number of lines n. However, the major result in increasing this 
parameter is the decrease in  the numerical diffusion. As a consequence, the error 
propagation will be decreased as well. The result will be a simulation which better 
approximate the real behavior of the RTD in a screw conveyor. In fact, the quantity of 
tracer detected at a specific time instant will be closer to the amount of injected tracer. The 
resulting Gaussian curve at the exit of the reactor (𝑥 𝑙 = 1) is also influenced by the 
choice of the number of lines. In fact, as it increases, the shape of the curve will change, 
becoming more flat. It should be noted, however, that the decrease of the error in the 
measurement has been observed just for n<620. For this value, the measured relative 
error at two different time instants was on the order of 0.65%. In fact, for n>620, an 
inversion of the trend was present with consequent increase in the resulting error as n was 
increased. The reason for this behavior has to be referred to PDE discretization method. In 
particular, on the selection of a forward Finite Difference approximation in the Fokker 
Planck Equation.  
 

6.2 𝑬(𝒗) Resampling  
It has been previously observed that, the time domain of the Residence Time Distribution 
can be converted into a velocity domain once the reactor length is specified. In this case 
again, the velocity distribution curve shape is expected to be again a Gaussian curve as 
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the one obtained for 𝐸(𝑡). Together with the plot of 𝐸(𝑣) it is interesting to show also its 
resampled form so that to have an overview about how they are connected. 

 
Figure 19: plot of E(v) and its resampling 

As said before, resampling 𝐸(𝑣) is fundamental to obtain a finite number of values to 
insert into the heat transfer model of the fast pyrolysis process.  
As expected, the resampled form of 𝐸(𝑣) (k in figure 16) will be a step function with the 
specified resampling interval. In this way, instead of a continuous function with an infinite 
number of values for 𝐸(𝑣), another function can be considered. This one with a finite 
number of values to be decided arbitrarily. This gives the possibility of inserting it inside 
the energy balance matrix. The resampling interval must be chosen coherently with the 
dimensions of the matrix describing the heat transfer. 
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7.Conclusions 

In this project thesis, the particles Residence Time Distribution inside a screw reactor has 
been obtained by numerical solution of an Axial Dispersion Model. A MatLab  code has 
been developed to solve the convective-diffusive Axial Dispersion Model partial differential 
equation into a number of arbitrarily chosen ODE. The system has been subsequently 
solved with the use of the MatLab integrator ode15s. The main obtained results are the 
following: 

• The Axial Dispersion Model has been solved through a numerical evaluation by 
means of the Method Of Lines. In particular, the finite difference approximations of 
the space derivatives has been considered to build a system of ODEs with time as 
the independent variable. Initial and boundary conditions  have been specified to 
complete the description of the PDE problem. Finally, the system has been solved 
in MatLab environment.  

• A parametric analysis of the ADM has been performed on the main parameters in 
the Fokker-Planck equation, namely, the number of lines, the diffusion coefficient 
and the solid velocity. In particular, it has been observed that decreasing the solid 
velocity, as well as increasing the diffusion coefficient, will increase the convexity 
of the curve. Consequently, the RTD of the different particle will be less uniform. 
Moreover, increasing the number of lines, the solution will better approximate the 
real RTD in a screw conveyor since the numerical diffusion of the error will 
decrease.  

• Residence time and velocity distribution of mass particles inside the reactor of a fast 
pyrolysis process has been evaluated. 

 
As a final result, the distribution can be coupled with a comprehensive heat and mass 

transfer code developed for  fast pyrolysis purposes.  
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